


Principes généraux des engrenages à axes perpendiculaires

GÉNÉRALITÉS

Les engrenages à axes perpendiculaires permettent une transmission de couple sans glissement entre deux engrenages dont les axes se coupent à angle droit. Les rapports de réduction livrables de stock vont de 1:1 à 1:5 (selon le matériau). Sur une roue conique le module n'est pas une grandeur constante, il change avec le diamètre. Le sens de rotation peut se lire dans le dessin ci-dessous.

FORMULES DE CALCUL USUELLES DES ROUES CONIQUES À DENTURE DROITE

Module : m	Pas	t/π
	Ø primitif de référence et nombre de dents	d ₄ / Z
Ø primitif de référence : d4	Nombre de dents et module	Z . m
Angle primitif de référence Roue 1 : $\delta_{\rm o}$	Angle des axes et nombre de dents Roue 1 et Roue 2 $Z_1/Z_2 = tg \delta_{01}$	
Angle primitif de référence Roue 2 : δ_{\circ}	Angle des axes et angle primitif de référence Roue 1	$\delta_a - \delta_{01}$
Angle de la tête de dent : χ_{k}	Angle primitif de référence et nombre de dents	(2 . $\sin \delta_o$) /Z = $tg \chi_k$
	Module et distance entre les sommets (longueur de génératrice Ra)	m / Ra = tg χ_k
Ø de tête : d ₂	Ø primitif de référence, angle primitif de référence et module	d_4 + (2 m . cos δ_o)
	Nombre de dents, angle primitif et module	Z . m + (2 m . $\cos \delta_o$)
Angle de tête : δ_a	Angle primitif de référence et angle de la tête de dent	90° – $(\delta_o + \chi_k) \delta_k$
Distance entre les sommets (longueur de génératrice : Ra)	Ø primitif de référence, angle primitif de référence	d_4 / (2 . $\sin \delta_o$)
Roue 1 (grande roue) + roue 2 (petite roue) Couple en Nm	Puissance et nombre de tours	Roue 1 : 9550 P / n ₁ Roue 2 : 9550 P / n ₂

P: Puissance en kW - n: puissance en tr/min - tg: tangente - ctg: cotangente

Largeur maximale de la dent : 0,4 x distance entre les sommets Ra (longueur de génératrice).

Pour les roues coniques, pour lesquelles le décalage angulaire des axes est supérieur ou inférieur à 90°, l'angle primitif de référence est calculé de la manière suivante : \mathbf{Z}_2 / $(\mathbf{Z}_1 \cdot \sin \delta_2)$ ctg $\delta_2 = \operatorname{ctg} \delta_{01}$

Principes généraux des engrenages à axes perpendiculaires

REMARQUES SUR LES VALEURS DE COUPLE INDIQUÉES

Les calculs de la résistance des engrenages reposent sur les notions de résistance au « pitting » sur les flancs de denture et de contraintes au pied de dent. La base de calcul est la norme DIN 3991.

En cas de rapports autres que 1:1, le couple indiqué vaut pour la petite roue.

La résistance d'une roue conique dépend de nombreux facteurs. Les couples indiqués sont donnés à titre indicatif afin de faciliter la sélection.

Pour les couples coniques en zinc moulé sous pression, seule la résistance au pied de denture a été prise en compte pour le calcul du couple, ces roues ne conviennent pas pour un service en continu.

RECOMMANDATION POUR LE GRAISSAGE ET LA LUBRIFICATION

Selon les conditions d'exploitation on peut influer sur la résistance à l'usure par une lubrification appropriée. Notez en outre qu'une lubrification insuffisante peut entraîner le grippage des flancs de dents.

Vitesse périphérique	Type de graissage	Lubrifiant
Jusqu'à 1 m/s	Lubrification par application	Lubrifiant adhérent
Jusqu'à 4 m/s	Lubrification par barbotage/aspersion	Graisse/lubrifiant adhérent
Jusqu'à 15 m/s	Lubrification par barbotage	Huile
Plus de 15 m/s	Lubrification forcée ou projection	Huile

CARACTÉRISTIQUES DES MATÉRIAUX MIS EN ŒUVRE

Matériau	Pression sur flancs admissible N/mm²
POM C	40
ZnAl4Cu1	150
Ms58 (2.0401)	250
11SmnPb30*	350
C45	590
42CrMo4 (trempé)	1 360
16MnCr5 (cémenté)	1 630
1.4305 (AISI 303)	400