Calculs

VITESSE ANGULAIRE (W)

$$\omega = \frac{2\pi n}{60}$$

- n en tr/min ou min⁻¹
- ω en rad/s

Nombre de pôles Moteur asynchrone triphasé	Vitesse de synchronisme (tr/min.) Fréquence d'entrée 50Hz	Vitesse angulaire (0) (rad/s)
2	3000	314
4	1500	157
6	1000	105
8	750	78

MOMENT ou COUPLE (M ou C)

- N.m ou daN.m
- mkg (impropre mais encore utilisé)

N.m	daN.m (ou mkg)
10	1

PUISSANCE (P)

- W ou kW
- Ch (ancienne unité toujours utilisée)

W	kW	ch
736	0,736	1
1000	1	1,36

RELATIONS

PUISSANCE (puissance utile)

$$P(W) = U.I. \sqrt{3} \cos \phi. \eta$$

$$P(kW) = \frac{M(N.m) \times n(tr/min)}{9550}$$

MOMENT

$$M(Nm) = \frac{P(W)}{\omega (rad/s)}$$

$$M(Nm) = \frac{9550 \times P(kW)}{p(tr/min)}$$

MOMENT D'INERTIE

Masse ponctuelle

$$J = m.r^2$$

Cylindre plein autour de son axe

$$J=m\frac{r^2}{2}$$

Masse en mouvement linéaire (ramené à un mouvement de rotation)

$$J = m \left(\frac{v}{\omega}\right)^2$$

J en kg.m 2 r (rayon) en m ω en rad/s v (vitesse) en m/s m (masse) en kg